Profile: 5cee869c...
If you're sad about paying the fee, you could always turn the tables and run a node yourself and maybe someday rake in a 0.44 fee yourself.
Broadcasts will probably be almost completely reliable. TCP transmissions are rarely ever dropped these days, and the broadcast protocol has a retry mechanism to get the data from other nodes after a while. If broadcasts turn out to be slower in practice than expected, the target time between blocks may have to be increased to avoid wasting resources. We want blocks to usually propagate in much less time than it takes to generate them, otherwise nodes would spend too much time working on obsolete blocks.
With the transaction fee based incentive system I recently posted, nodes would have an incentive to include all the paying transactions they receive.
When a node finds a proof-of-work, the new block is propagated throughout the network and everyone adds it to the chain and starts working on the next block after it. Any nodes that had the other transaction will stop trying to include it in a block, since it's now invalid according to the accepted chain.
The network is robust in its unstructured simplicity. Nodes work all at once with little coordination. They do not need to be identified, since messages are not routed to any particular place and only need to be delivered on a best effort basis. Nodes can leave and rejoin the network at will, accepting the proof-of-work chain as proof of what happened while they were gone. They vote with their CPU power, expressing their acceptance of valid blocks by working on extending them and rejecting invalid blocks by refusing to work on them. Any needed rules and incentives can be enforced with this consensus mechanism.
Forgot to add the good part about micropayments. While I don't think Bitcoin is practical for smaller micropayments right now, it will eventually be as storage and bandwidth costs continue to fall. If Bitcoin catches on on a big scale, it may already be the case by that time. Another way they can become more practical is if I implement client-only mode and the number of network nodes consolidates into a smaller number of professional server farms. Whatever size micropayments you need will eventually be practical. I think in 5 or 10 years, the bandwidth and storage will seem trivial.
Banks must be trusted to hold our money and transfer it electronically, but they lend it out in waves of credit bubbles with barely a fraction in reserve. We have to trust them with our privacy, trust them not to let identity thieves drain our accounts. Their massive overhead costs make micropayments impossible.
Currently, paying a fee is controlled manually with the -paytxfee switch. It would be very easy to make the software automatically check the size of recent blocks to see if it should pay a fee. We're so far from reaching the threshold, we don't need that yet. It's a good idea to see how things go with controlling it manually first anyway.
Another option is to reduce the number of free transactions allowed per block before transaction fees are required. Nodes only take so many KB of free transactions per block before they start requiring at least 0.01 transaction fee. The threshold should probably be lower than it currently is. I don't think the threshold should ever be 0. We should always allow at least some free transactions.
If you're sad about paying the fee, you could always turn the tables and run a node yourself and maybe someday rake in a 0.44 fee yourself.
In a few decades when the reward gets too small, the transaction fee will become the main compensation for nodes.
If you're having trouble with the inflation issue, it's easy to tweak it for transaction fees instead. It's as simple as this: let the output value from any transaction be 1 cent less than the input value. Either the client software automatically writes transactions for 1 cent more than the intended payment value, or it could come out of the payee's side. The incentive value when a node finds a proof-of-work for a block could be the total of the fees in the block.
The incentive can also be funded with transaction fees. If the output value of a transaction is less than its input value, the difference is a transaction fee that is added to the incentive value of the block containing the transaction. Once a predetermined number of coins have entered circulation, the incentive can transition entirely to transaction fees and be completely inflation free.
SHA-256 is very strong. It's not like the incremental step from MD5 to SHA1. It can last several decades unless there's some massive breakthrough attack.
The nature of Bitcoin is such that once version 0.1 was released, the core design was set in stone for the rest of its lifetime. Because of that, I wanted to design it to support every possible transaction type I could think of. The problem was, each thing required special support code and data fields whether it was used or not, and only covered one special case at a time. It would have been an explosion of special cases. The solution was script, which generalizes the problem so transacting parties can describe their transaction as a predicate that the node network evaluates. The nodes only need to understand the transaction to the extent of evaluating whether the sender's conditions are met.
When you generate a new bitcoin address, it only takes disk space on your own computer (like 500 bytes). It's like generating a new PGP private key, but less CPU intensive because it's ECC. The address space is effectively unlimited. It doesn't hurt anyone, so generate all you want.
Bitcoin addresses you generate are kept forever. A bitcoin address must be kept to show ownership of anything sent to it. If you were able to delete a bitcoin address and someone sent to it, the money would be lost. They're only about 500 bytes.
I very much wanted to find some way to include a short message, but the problem is, the whole world would be able to see the message. As much as you may keep reminding people that the message is completely non-private, it would be an accident waiting to happen.
The result is a distributed system with no single point of failure. Users hold the crypto keys to their own money and transact directly with each other, with the help of the P2P network to check for double-spending.