Profile: 5cee869c...

I anticipate there will never be more than 100K nodes, probably less. It will reach an equilibrium where it's not worth it for more nodes to join in. The rest will be lightweight clients, which could be millions.

If you're sad about paying the fee, you could always turn the tables and run a node yourself and maybe someday rake in a 0.44 fee yourself.

If you can keep a node running that accepts incoming connections, you'll really be helping the network a lot. Port 8333 on your firewall needs to be open to receive incoming connections.

With the transaction fee based incentive system I recently posted, nodes would have an incentive to include all the paying transactions they receive.

When a node finds a proof-of-work, the new block is propagated throughout the network and everyone adds it to the chain and starts working on the next block after it. Any nodes that had the other transaction will stop trying to include it in a block, since it's now invalid according to the accepted chain.

At first, most users would run network nodes, but as the network grows beyond a certain point, it would be left more and more to specialists with server farms of specialized hardware. A server farm would only need to have one node on the network and the rest of the LAN connects with that one node.

Forgot to add the good part about micropayments. While I don't think Bitcoin is practical for smaller micropayments right now, it will eventually be as storage and bandwidth costs continue to fall. If Bitcoin catches on on a big scale, it may already be the case by that time. Another way they can become more practical is if I implement client-only mode and the number of network nodes consolidates into a smaller number of professional server farms. Whatever size micropayments you need will eventually be practical. I think in 5 or 10 years, the bandwidth and storage will seem trivial.

Banks must be trusted to hold our money and transfer it electronically, but they lend it out in waves of credit bubbles with barely a fraction in reserve. We have to trust them with our privacy, trust them not to let identity thieves drain our accounts. Their massive overhead costs make micropayments impossible.

It might make sense just to get some in case it catches on. If enough people think the same way, that becomes a self fulfilling prophecy. Once it gets bootstrapped, there are so many applications if you could effortlessly pay a few cents to a website as easily as dropping coins in a vending machine.

Currently, paying a fee is controlled manually with the -paytxfee switch. It would be very easy to make the software automatically check the size of recent blocks to see if it should pay a fee. We're so far from reaching the threshold, we don't need that yet. It's a good idea to see how things go with controlling it manually first anyway.

If you're sad about paying the fee, you could always turn the tables and run a node yourself and maybe someday rake in a 0.44 fee yourself.

In a few decades when the reward gets too small, the transaction fee will become the main compensation for nodes.

If you're having trouble with the inflation issue, it's easy to tweak it for transaction fees instead. It's as simple as this: let the output value from any transaction be 1 cent less than the input value. Either the client software automatically writes transactions for 1 cent more than the intended payment value, or it could come out of the payee's side. The incentive value when a node finds a proof-of-work for a block could be the total of the fees in the block.

The incentive can also be funded with transaction fees. If the output value of a transaction is less than its input value, the difference is a transaction fee that is added to the incentive value of the block containing the transaction. Once a predetermined number of coins have entered circulation, the incentive can transition entirely to transaction fees and be completely inflation free.

If SHA-256 became completely broken, I think we could come to some agreement about what the honest block chain was before the trouble started, lock that in and continue from there with a new hash function.

SHA-256 is very strong. It's not like the incremental step from MD5 to SHA1. It can last several decades unless there's some massive breakthrough attack.

The project needs to grow gradually so the software can be strengthened along the way. I make this appeal to WikiLeaks not to try to use Bitcoin. Bitcoin is a small beta community in its infancy.

I'm happy if someone with artistic skill wants to contribute alternatives. The icon/logo was meant to be good as an icon at the 16x16 and 20x20 pixel sizes. I think it's the best program icon, but there's room for improvement at larger sizes for a graphic for use on websites. It'll be a lot simpler if authors could make their graphics public domain.

The design supports a tremendous variety of possible transaction types that I designed years ago. Escrow transactions, bonded contracts, third party arbitration, multi-party signature, etc. If Bitcoin catches on in a big way, these are things we'll want to explore in the future, but they all had to be designed at the beginning to make sure they would be possible later.

When you generate a new bitcoin address, it only takes disk space on your own computer (like 500 bytes). It's like generating a new PGP private key, but less CPU intensive because it's ECC. The address space is effectively unlimited. It doesn't hurt anyone, so generate all you want.