Profile: 5cee869c...
The current system where every user is a network node is not the intended configuration for large scale. That would be like every Usenet user runs their own NNTP server. The design supports letting users just be users. The more burden it is to run a node, the fewer nodes there will be. Those few nodes will be big server farms. The rest will be client nodes that only do transactions and don't generate.
I anticipate there will never be more than 100K nodes, probably less. It will reach an equilibrium where it's not worth it for more nodes to join in. The rest will be lightweight clients, which could be millions.
If you're sad about paying the fee, you could always turn the tables and run a node yourself and maybe someday rake in a 0.44 fee yourself.
If you can keep a node running that accepts incoming connections, you'll really be helping the network a lot. Port 8333 on your firewall needs to be open to receive incoming connections.
Broadcasts will probably be almost completely reliable. TCP transmissions are rarely ever dropped these days, and the broadcast protocol has a retry mechanism to get the data from other nodes after a while. If broadcasts turn out to be slower in practice than expected, the target time between blocks may have to be increased to avoid wasting resources. We want blocks to usually propagate in much less time than it takes to generate them, otherwise nodes would spend too much time working on obsolete blocks.
With the transaction fee based incentive system I recently posted, nodes would have an incentive to include all the paying transactions they receive.
When a node finds a proof-of-work, the new block is propagated throughout the network and everyone adds it to the chain and starts working on the next block after it. Any nodes that had the other transaction will stop trying to include it in a block, since it's now invalid according to the accepted chain.
At first, most users would run network nodes, but as the network grows beyond a certain point, it would be left more and more to specialists with server farms of specialized hardware. A server farm would only need to have one node on the network and the rest of the LAN connects with that one node.
The network is robust in its unstructured simplicity. Nodes work all at once with little coordination. They do not need to be identified, since messages are not routed to any particular place and only need to be delivered on a best effort basis. Nodes can leave and rejoin the network at will, accepting the proof-of-work chain as proof of what happened while they were gone. They vote with their CPU power, expressing their acceptance of valid blocks by working on extending them and rejecting invalid blocks by refusing to work on them. Any needed rules and incentives can be enforced with this consensus mechanism.
Nodes always consider the longest chain to be the correct one and will keep working on extending it. If two nodes broadcast different versions of the next block simultaneously, some nodes may receive one or the other first. In that case, they work on the first one they received, but save the other branch in case it becomes longer. The tie will be broken when the next proof-of-work is found and one branch becomes longer; the nodes that were working on the other branch will then switch to the longer one.
Forgot to add the good part about micropayments. While I don't think Bitcoin is practical for smaller micropayments right now, it will eventually be as storage and bandwidth costs continue to fall. If Bitcoin catches on on a big scale, it may already be the case by that time. Another way they can become more practical is if I implement client-only mode and the number of network nodes consolidates into a smaller number of professional server farms. Whatever size micropayments you need will eventually be practical. I think in 5 or 10 years, the bandwidth and storage will seem trivial.
Banks must be trusted to hold our money and transfer it electronically, but they lend it out in waves of credit bubbles with barely a fraction in reserve. We have to trust them with our privacy, trust them not to let identity thieves drain our accounts. Their massive overhead costs make micropayments impossible.
It might make sense just to get some in case it catches on. If enough people think the same way, that becomes a self fulfilling prophecy. Once it gets bootstrapped, there are so many applications if you could effortlessly pay a few cents to a website as easily as dropping coins in a vending machine.
Currently, paying a fee is controlled manually with the -paytxfee switch. It would be very easy to make the software automatically check the size of recent blocks to see if it should pay a fee. We're so far from reaching the threshold, we don't need that yet. It's a good idea to see how things go with controlling it manually first anyway.
Another option is to reduce the number of free transactions allowed per block before transaction fees are required. Nodes only take so many KB of free transactions per block before they start requiring at least 0.01 transaction fee. The threshold should probably be lower than it currently is. I don't think the threshold should ever be 0. We should always allow at least some free transactions.
If you're sad about paying the fee, you could always turn the tables and run a node yourself and maybe someday rake in a 0.44 fee yourself.
In a few decades when the reward gets too small, the transaction fee will become the main compensation for nodes.
If you're having trouble with the inflation issue, it's easy to tweak it for transaction fees instead. It's as simple as this: let the output value from any transaction be 1 cent less than the input value. Either the client software automatically writes transactions for 1 cent more than the intended payment value, or it could come out of the payee's side. The incentive value when a node finds a proof-of-work for a block could be the total of the fees in the block.
The incentive can also be funded with transaction fees. If the output value of a transaction is less than its input value, the difference is a transaction fee that is added to the incentive value of the block containing the transaction. Once a predetermined number of coins have entered circulation, the incentive can transition entirely to transaction fees and be completely inflation free.