Avatar
Quotable Satoshi
87570647ca3b7549e66cb6c4bb8d197f5bc91de73b58eb1ade78c8ddd5fec7eb
I disseminate the writings of Satoshi Nakamoto, one quote at a time.

Right, the difficulty adjustment is trying to keep it so the network as a whole generates an average of 6 blocks per hour. The time for your block to mature will always be around 20 hours.

Eventually at most only 21 million coins for 6.8 billion people in the world if it really gets huge.

But don't worry, there are another 6 decimal places that aren't shown, for a total of 8 decimal places internally. It shows 1.00 but internally it's 1.00000000. If there's massive deflation in the future, the software could show more decimal places.

To Sepp's question, indeed there is nobody to act as central bank or federal reserve to adjust the money supply as the population of users grows. That would have required a trusted party to determine the value, because I don't know a way for software to know the real world value of things.

The proof-of-work chain is a solution to the Byzantine Generals' Problem. I'll try to rephrase it in that context.

A number of Byzantine Generals each have a computer and want to attack the King's wi-fi by brute forcing the password, which they've learned is a certain number of characters in length. Once they stimulate the network to generate a packet, they must crack the password within a limited time to break in and erase the logs, otherwise they will be discovered and get in trouble. They only have enough CPU power to crack it fast enough if a majority of them attack at the same time.

They don't particularly care when the attack will be, just that they all agree. It has been decided that anyone who feels like it will announce a time, and whatever time is heard first will be the official attack time. The problem is that the network is not instantaneous, and if two generals announce different attack times at close to the same time, some may hear one first and others hear the other first. They use a proof-of-work chain to solve the problem. Once each general receives whatever attack time he hears first, he sets his computer to solve an extremely difficult proof-of-work problem that includes the attack time in its hash. The proof-of-work is so difficult, it's expected to take 10 minutes of them all working at once before one of them finds a solution. Once one of the generals finds a proof-of-work, he broadcasts it to the network, and everyone changes their current proof-of-work computation to include that proof-of-work in the hash they're working on. If anyone was working on a different attack time, they switch to this one, because its proof-of-work chain is now longer.

After two hours, one attack time should be hashed by a chain of 12 proofs-of-work. Every general, just by verifying the difficulty of the proof-of-work chain, can estimate how much parallel CPU power per hour was expended on it and see that it must have required the majority of the computers to produce that much proof-of-work in the allotted time. They had to all have seen it because the proof-of-work is proof that they worked on it. If the CPU power exhibited by the proof-of-work chain is sufficient to crack the password, they can safely attack at the agreed time.

The proof-of-work chain is how all the synchronisation, distributed database and global view problems you've asked about are solved.

There will be transaction fees, so nodes will have an incentive to receive and include all the transactions they can. Nodes will eventually be compensated by transaction fees alone when the total coins created hits the pre-determined ceiling.

Forgot to add the good part about micropayments. While I don't think Bitcoin is practical for smaller micropayments right now, it will eventually be as storage and bandwidth costs continue to fall. If Bitcoin catches on on a big scale, it may already be the case by that time. Another way they can become more practical is if I implement client-only mode and the number of network nodes consolidates into a smaller number of professional server farms. Whatever size micropayments you need will eventually be practical. I think in 5 or 10 years, the bandwidth and storage will seem trivial.

A lot of people automatically dismiss e-currency as a lost cause because of all the companies that failed since the 1990's. I hope it's obvious it was only the centrally controlled nature of those systems that doomed them. I think this is the first time we're trying a decentralized, non-trust-based system.

Bitcoin would be convenient for people who don't have a credit card or don't want to use the cards they have, either don't want the spouse to see it on the bill or don't trust giving their number to "porn guys", or afraid of recurring billing.

A lot of people automatically dismiss e-currency as a lost cause because of all the companies that failed since the 1990's. I hope it's obvious it was only the centrally controlled nature of those systems that doomed them. I think this is the first time we're trying a decentralized, non-trust-based system.

I would be surprised if 10 years from now we're not using electronic currency in some way, now that we know a way to do it that won't inevitably get dumbed down when the trusted third party gets cold feet.

How does everyone feel about the B symbol with the two lines through the outside? Can we live with that as our logo?

I anticipate there will never be more than 100K nodes, probably less. It will reach an equilibrium where it's not worth it for more nodes to join in. The rest will be lightweight clients, which could be millions.

I'm sure that in 20 years there will either be very large transaction volume or no volume.

Eventually at most only 21 million coins for 6.8 billion people in the world if it really gets huge.

But don't worry, there are another 6 decimal places that aren't shown, for a total of 8 decimal places internally. It shows 1.00 but internally it's 1.00000000. If there's massive deflation in the future, the software could show more decimal places.

A digital coin contains the public key of its owner. To transfer it, the owner signs the coin together with the public key of the next owner. Anyone can check the signatures to verify the chain of ownership.

There are two ways to send money. If the recipient is online, you can enter their IP address and it will connect, get a new public key and send the transaction with comments. If the recipient is not online, it is possible to send to their Bitcoin address, which is a hash of their public key that they give you. They'll receive the transaction the next time they connect and get the block it's in. This method has the disadvantage that no comment information is sent, and a bit of privacy may be lost if the address is used multiple times, but it is a useful alternative if both users can't be online at the same time or the recipient can't receive incoming connections.

The attacker isn't adding blocks to the end. He has to go back and redo the block his transaction is in and all the blocks after it, as well as any new blocks the network keeps adding to the end while he's doing that. He's rewriting history. Once his branch is longer, it becomes the new valid one.

Simplified Payment Verification is for lightweight client-only users who only do transactions and don't generate and don't participate in the node network. They wouldn't need to download blocks, just the hash chain, which is currently about 2MB and very quick to verify (less than a second to verify the whole chain). If the network becomes very large, like over 100,000 nodes, this is what we'll use to allow common users to do transactions without being full blown nodes. At that stage, most users should start running client-only software and only the specialist server farms keep running full network nodes, kind of like how the usenet network has consolidated.

SPV is not implemented yet, and won't be implemented until far in the future, but all the current implementation is designed around supporting it.

You could use TOR if you don't want anyone to know you're even using Bitcoin.

With the transaction fee based incentive system I recently posted, nodes would have an incentive to include all the paying transactions they receive.