To periodically update the KNN model, you can use the following steps:

1. Define a time interval for updating the model:

```

const updateInterval = 60 * 1000; // Update model every 60 seconds

```

2. Use the `setInterval` method to periodically update the KNN model:

```

setInterval(() => {

// Update KNN model here

}, updateInterval);

```

3. Inside the `setInterval` callback function, you can update the KNN model by retraining it with new data or removing old data points:

```

setInterval(() => {

// Remove examples that are older than a certain time threshold

const threshold = Date.now() - (60 * 60 * 1000); // Remove examples older than 1 hour

const examples = knn.getClassExampleCount();

Object.keys(examples).forEach(label => {

const exampleCount = examples[label];

if (exampleCount > 0) {

const latestExample = knn.getClassExample(label, exampleCount - 1);

if (latestExample.timestamp < threshold) {

knn.removeExample(label, latestExample);

}

}

});

// Retrain KNN model with new data

const newData = ['Howdy', 'Nice to meet you'];

newData.forEach(async (data, index) => {

const embedding = await model.embed(data).array();

const tensor = tf.tensor1d(embedding);

knn.addExample(tensor, index);

});

}, updateInterval);

```

In the above code, we remove examples from the KNN model that are older than a certain time threshold. We then retrain the KNN model with new data by preprocessing the data, creating tensors, and adding them to the KNN model using `addExample`.

Note that the above code is just an example and you may need to adjust the time threshold and update interval to suit your specific use case.

Reply to this note

Please Login to reply.

Discussion

No replies yet.