It's a super viable option, there is already a solution using this protocol: sci-hub. I think one of the biggest challenges will be this distribution, I know few nodes that have implemented the search engine

Reply to this note

Please Login to reply.

Discussion

Result of an orientating session with ChatGPT:

When dealing with a growing and changing index on a decentralized system like IPFS, you need a data structure that can efficiently handle updates, additions, and deletions. Several data structures are well-suited for such a use case:

### 1. **Merkle Trees and DAGs (Directed Acyclic Graphs)**

IPFS itself is based on Merkle DAGs, which allow for efficient and verifiable updates. This structure can accommodate dynamic data while ensuring integrity and traceability of changes.

### 2. **CRDTs (Conflict-Free Replicated Data Types)**

CRDTs are designed for distributed systems where multiple replicas can independently update the data structure and later converge to a consistent state. These are particularly useful for maintaining an index in a decentralized manner.

### 3. **Append-Only Logs**

An append-only log can record changes to the index over time, which can then be aggregated and searched. This approach makes it easy to maintain an evolving dataset.

### 4. **IPLD (InterPlanetary Linked Data)**

IPLD is a data model for representing complex data structures on IPFS. It allows you to create linked data structures that can evolve over time.

### Detailed Approach Using IPLD and Merkle DAGs

#### **Using Merkle DAGs for a Dynamic Index**

1. **Initial Setup:**

- Split the index into manageable chunks.

- Store each chunk on IPFS and get the CIDs.

- Create a Merkle DAG where each node points to the chunks (leaves).

2. **Updating the Index:**

- When updating, create new chunks if necessary.

- Update the Merkle DAG to point to the new chunks.

- Publish the new root CID of the DAG on Nostr.

#### **Implementation Steps:**

##### 1. Chunking and Storing on IPFS

```python

import ipfshttpclient

client = ipfshttpclient.connect('/dns/localhost/tcp/5001/http')

def chunk_and_store_index(index_data, chunk_size=1024):

chunks = [index_data[i:i + chunk_size] for i in range(0, len(index_data), chunk_size)]

cids = [client.add_str(chunk) for chunk in chunks]

return cids

```

##### 2. Creating a Merkle DAG

```python

import json

def create_merkle_dag(cids):

dag = {'chunks': cids}

dag_cid = client.add_str(json.dumps(dag))

return dag_cid

```

##### 3. Updating the Index

```python

def update_index(new_data, existing_cids, chunk_size=1024):

new_chunks = [new_data[i:i + chunk_size] for i in range(0, len(new_data), chunk_size)]

new_cids = [client.add_str(chunk) for chunk in new_chunks]

all_cids = existing_cids + new_cids

return create_merkle_dag(all_cids)

```

##### 4. Publishing Metadata on Nostr

```python

import nostr

from nostr.event import Event

def publish_index_metadata(dag_cid):

relay_url = 'wss://your.nostr.relay'

client = nostr.Client()

client.connect(relay_url)

metadata_event = Event(kind=1, content={'dag_cid': dag_cid})

client.publish_event(metadata_event)

# Example usage

index_data = "Your initial large index data..."

cids = chunk_and_store_index(index_data)

dag_cid = create_merkle_dag(cids)

publish_index_metadata(dag_cid)

```

##### 5. Fetching and Assembling the Index on Clients

```python

def fetch_index_metadata():

relay_url = 'wss://your.nostr.relay'

client = nostr.Client()

client.connect(relay_url)

events = client.get_events(kind=1, limit=1) # Get the latest event of kind=1

if events:

return events[0].content['dag_cid']

return None

def fetch_and_assemble_index(dag_cid):

dag = json.loads(client.cat(dag_cid).decode('utf-8'))

index_data = ""

for cid in dag['chunks']:

index_data += client.cat(cid).decode('utf-8')

return index_data

# Example usage

dag_cid = fetch_index_metadata()

if dag_cid:

index_data = fetch_and_assemble_index(dag_cid)

print(index_data)

```

### Summary

- **Chunking and Storing**: Split the index into chunks and store them on IPFS.

- **Merkle DAG**: Use a Merkle DAG to link the chunks, providing an updatable structure.

- **Publishing Metadata**: Use Nostr to share the latest DAG root CID.

- **Client-Side Fetching**: Clients fetch the DAG and reconstruct the index.

This approach allows the index to grow and change dynamically while ensuring that clients can always access the latest version in a decentralized manner. Using IPLD and Merkle DAGs aligns well with the principles of IPFS, providing a scalable and efficient way to manage large, evolving datasets.