"Lost in the Middle: How Language Models Use Long Contexts" investigates the performance of language models in utilizing long input contexts. The study focuses on multi-document question answering and key-value retrieval tasks that require language models to identify and use relevant information within their input contexts. The analysis reveals that language models tend to perform better when the relevant information is located at the beginning or end of the input context but struggle when accessing relevant information in the middle of long contexts. The research also finds that as the input context becomes longer, model performance decreases, even for models designed for long-context processing. The document provides insights into how language models use their input contexts and suggests new evaluation protocols for future models. It includes experiments with open and closed language models and investigates the impact of model architecture, query-aware contextualization, and instruction fine-tuning. A case study on open-domain question answering with retriever-reader models highlights the trade-off between adding more information to the input context and the model's ability to reason effectively over it. Overall, the research sheds light on the limitations and challenges of language models in effectively utilizing long input contexts for various tasks。

#chatgpt #AI #LLM

https://arxiv.org/abs/2307.03172

Reply to this note

Please Login to reply.

Discussion

《Lost in the Middle: How Language Models Use Long Contexts》這篇論文的主要研究內容是探討語言模型在長文本中有效利用輸入內容的表現。該文件重點研究了多文檔問答和鍵值檢索這兩個任務,這些任務要求語言模型識別並使用其輸入內容中的相關信息。研究結果顯示,當相關信息位於輸入內容的開頭或結尾時,語言模型的表現最佳。然而,當它們需要訪問長文本中的中間位置時,它們的性能顯著下降。研究還發現,隨著輸入內容的增加,即使對於明確設計用於長文本處理的模型,其性能也會下降。該文件深入探討了語言模型如何使用其輸入內容,並提出了未來模型的新評估協議。分析包括對開放和封閉語言模型的實驗,並研究了模型架構、查詢感知內容化和指令微調對模型使用上下文的影響。此外,對於開放域問答中的檢索器-閱讀器模型進行的案例研究揭示了將更多信息添加到輸入內容和模型有效推理之間的平衡。總的來說,這項研究揭示了語言模型在有效利用長篇輸入內容以應對各種任務時的限制和挑戰。