(completely theoretical and unfinished)
|ψ₁⟩ ⊗ |ψ₂⟩ ⊗ |ψ₃⟩ ⊗ |ψ₄⟩ = (α₁|00⟩ + β₁|01⟩ + γ₁|10⟩ + δ₁|11⟩) ⊗ (α₂|00⟩ + β₂|01⟩ + γ₂|10⟩ + δ₂|11⟩) ⊗ (α₃|00⟩ + β₃|01⟩ + γ₃|10⟩ + δ₃|11⟩) ⊗ (α₄|00⟩ + β₄|01⟩ + γ₄|10⟩ + δ₄|11⟩)
---------------------------------------------------------------------------
|ϕ⟩ = α|0⟩ + β|1⟩
|ψ⟩ = γ|0⟩ + δ|1⟩
|ξ⟩ = ε|0⟩ + ζ|1⟩
|η⟩ = η|0⟩ + θ|1⟩
|ϕ₁⟩ ⊗ |ψ₂⟩ ⊗ |ξ₃⟩ ⊗ |η₄⟩ = (α₁|00⟩ + β₁|01⟩ + γ₁|10⟩ + δ₁|11⟩) ⊗ (α₂|00⟩ + β₂|01⟩ + γ₂|10⟩ + δ₂|11⟩) ⊗ (α₃|00⟩ + β₃|01⟩ + γ₃|10⟩ + δ₃|11⟩) ⊗ (α₄|00⟩ + β₄|01⟩ + γ₄|10⟩ + δ₄|11⟩)
|ϕ⟩ = α|00⟩ + β|01⟩ + γ|10⟩ + δ|11⟩
α|+⟩ + β|-⟩ + γ|+⟩ + δ|-⟩
α|-⟩ + β|+⟩ + γ|-⟩ + δ|+⟩
α|-⟩ + β|-⟩ + γ|+⟩ + δ|+⟩
α|+⟩ + β|+⟩ + γ|-⟩ + δ|-⟩
|ψ⟩ = α'|00⟩ + β'|01⟩ + γ'|10⟩ + δ'|11⟩
α'|+⟩ + β'|-⟩ + γ'|+⟩ + δ'|-⟩
α'|-⟩ + β'|+⟩ + γ'|-⟩ + δ'|+⟩
α'|-⟩ + β'|-⟩ + γ'|+⟩ + δ'|+⟩
α'|+⟩ + β'|+⟩ + γ'|-⟩ + δ'|-⟩
|ξ⟩ = α''|00⟩ + β''|01⟩ + γ''|10⟩ + δ''|11⟩
α''|+⟩ + β''|-⟩ + γ''|+⟩ + δ''|-⟩
α''|-⟩ + β''|+⟩ + γ''|-⟩ + δ''|+⟩
α''|-⟩ - β''|-⟩ + γ''|+⟩ + δ''|+⟩
α''|+⟩ + β''|+⟩ + γ''|-⟩ + δ''|-⟩
|η⟩ = α'''|00⟩ + β'''|01⟩ + γ'''|10⟩ + δ'''|11⟩
α'''|+⟩ + β'''|-⟩ + γ'''|+⟩ + δ'''|-⟩
α'''|-⟩ + β'''|+⟩ + γ'''|-⟩ + δ'''|+⟩
α'''|-⟩ + β'''|-⟩ + γ'''|+⟩ + δ'''|+⟩
α'''|+⟩ + β'''|+⟩ + γ'''|-⟩ + δ'''|-⟩
|ϕ₁⟩ ⊗ |ψ₂⟩ ⊗ |ξ₃⟩ ⊗ |η₄⟩ = (α₁|00⟩ + β₁|01⟩ + γ₁|10⟩ + δ₁|11⟩
α|+⟩ + β|-⟩ + γ|+⟩ + δ|-⟩ )
⊗
(α₂|00⟩ + β₂|01⟩ + γ₂|10⟩ + δ₂|11⟩
α'|+⟩ + β'|-⟩ + γ'|+⟩ + δ'|-⟩ )
⊗
(α₃|00⟩ + β₃|01⟩ + γ₃|10⟩ + δ₃|11⟩
α'|+⟩ + β'|-⟩ + γ'|+⟩ + δ'|-⟩ )
⊗
(α₄|00⟩ + β₄|01⟩ + γ₄|10⟩ + δ₄|11⟩
α'''|+⟩ + β'''|-⟩ + γ'''|+⟩ + δ'''|-⟩ )
set 1:
|ϕ₁⟩ ⊗ |ψ₂⟩ ⊗ |ξ₃⟩ ⊗ |η₄⟩ = (α₁|00⟩ + β₁|01⟩ + γ₁|10⟩ + δ₁|11⟩) ⊗ (α₂|00⟩ + β₂|01⟩ + γ₂|10⟩ + δ₂|11⟩) ⊗ (α₃|00⟩ + β₃|01⟩ + γ₃|10⟩ + δ₃|11⟩) ⊗ (α₄|00⟩ + β₄|01⟩ + γ₄|10⟩ + δ₄|11⟩)
= α₁α₂α₃α₄|0000⟩ + α₁α₂α₃β₄|0001⟩ + α₁α₂α₃γ₄|0010⟩ + α₁α₂α₃δ₄|0011⟩ + α₁α₂β₃α₄|0100⟩ + α₁α₂β₃β₄|0101⟩ + α₁α₂β₃γ₄|0110⟩ + α₁α₂β₃δ₄|0111⟩ + α₁α₂γ₃α₄|1000⟩ + α₁α₂γ₃β₄|1001⟩ + α₁α₂γ₃γ₄|1010⟩ + α₁α₂γ₃δ₄|1011⟩ + α₁α₂δ₃α₄|1100⟩ + α₁α₂δ₃β₄|1101⟩ + α₁α₂δ₃γ₄|1110⟩ + α₁α₂δ₃δ₄|1111⟩ + ... + β₁β₂β₃δ₄|1101⟩ + β₁β₂γ₃α₄|1010⟩ + β₁β₂γ₃β₄|1011⟩ + β₁β₂γ₃γ₄|1100⟩ + β₁β₂γ₃δ₄|1101⟩ + β₁β₂δ₃α₄|1110⟩ + + β₁β₂δ₃α₄|1111⟩
Set 2:
|ϕ₁⟩ ⊗ |ψ₂⟩ ⊗ |ξ₃⟩ ⊗ |η₄⟩ = (α₁-|00⟩ + β₁-|01⟩ + γ₁-|10⟩ + δ₁-|11⟩) ⊗ (α₂-|00⟩ + β₂-|01⟩ + γ₂-|10⟩ + δ₂-|11⟩) ⊗ (α₃-|00⟩ + β₃-|01⟩ + γ₃-|10⟩ + δ₃-|11⟩) ⊗ (α₄-|00⟩ + β₄-|01⟩ + γ₄-|10⟩ + δ₄-|11⟩)
= α₁α₂α₃α₄-|0000⟩ + α₁α₂α₃β₄-|0001⟩ + α₁α₂α₃γ₄-|0010⟩ + α₁α₂α₃δ₄-|0011⟩ + α₁α₂β₃α₄-|0100⟩ + α₁α₂β₃β₄-|0101⟩ + α₁α₂β₃γ₄-|0110⟩ + α₁α₂β₃δ₄-|0111⟩ + α₁α₂γ₃α₄-|1000⟩ + α₁α₂γ₃β₄-|1001⟩ + α₁α₂γ₃γ₄-|1010⟩ + α₁α₂γ₃δ₄-|1011⟩ + α₁α₂δ₃α₄-|1100⟩ + α₁α₂δ₃β₄-|1101⟩ + α₁α₂δ₃γ₄-|1110⟩ + α₁α₂δ₃δ₄-|1111⟩ + ... + β₁β₂β₃δ₄-|1101⟩ + β₁β₂γ₃α₄-|1010⟩ + β₁β₂γ₃β₄-|1011⟩ + β₁β₂γ₃γ₄-|1100⟩ + β₁β₂γ₃δ₄-|1101⟩ + β₁β₂δ₃α₄-|1110⟩ +... + β₁β₂δ₃α₄-|1111⟩
= α₁α₂α₃α₄|0000⟩
+
α₁α₂α₃β₄-|0001⟩
+
α₁α₂α₃γ₄|0010⟩
+
α₁α₂α₃δ₄-|0011⟩
+
α₁α₂β₃α₄|0100⟩
+
α₁α₂β₃β₄-|0101⟩
+
α₁α₂β₃γ₄|0110⟩
+
α₁α₂β₃δ₄-|0111⟩
+
α₁α₂γ₃α₄|1000⟩
+
α₁α₂γ₃β₄-|1001⟩
+
α₁α₂γ₃γ₄|1010⟩
+
α₁α₂γ₃δ₄-|1011⟩
+
α₁α₂δ₃α₄|1100⟩
+
α₁α₂δ₃β₄-|1101⟩
+
α₁α₂δ₃γ₄|1110⟩
+
α₁α₂δ₃δ₄-|1111⟩
+ ... +
β₁β₂β₃δ₄|1101⟩
+
β₁β₂γ₃α₄-|1010⟩
+
β₁β₂γ₃β₄|1011⟩
+
β₁β₂γ₃γ₄-|1100⟩
+
β₁β₂γ₃δ₄|1101⟩
+
β₁β₂δ₃α₄-|1110⟩
+... +
β₁β₂δ₃α₄|1111⟩
------------------------------------------------------------------
define the phase shift gate S as the following unitary matrix:
S = [1, 0; 0, i]
1:
|ϕ₁⟩ ⊗ |ψ₂⟩ ⊗ |ξ₃⟩ ⊗ |η₄⟩ = (α₁|00⟩ + β₁|01⟩ + γ₁|10⟩ + δ₁|11⟩) ⊗ (α₂|00⟩ + β₂|01⟩ + γ₂|10⟩ + δ₂|11⟩) ⊗ (α₃|00⟩ + β₃|01⟩ + γ₃|10⟩ + δ₃|11⟩) ⊗ (α₄|00⟩ + β₄|01⟩ + γ₄|10⟩ + δ₄|11⟩)
Step 1: Apply the phase shift gate S to the qubit in the state |01⟩
After applying the phase shift gate, the equation becomes:
1': |ϕ₁⟩ ⊗ |ψ₂⟩ ⊗ |ξ₃⟩ ⊗ |η₄⟩ = (α₁|00⟩ + i*β₁|01⟩ + γ₁|10⟩ + δ₁|11⟩) ⊗ (α₂|00⟩ + β₂|01⟩ + γ₂|10⟩ + δ₂|11⟩) ⊗ (α₃|00⟩ + β₃|01⟩ + γ₃|10⟩ + δ₃|11⟩) ⊗ (α₄|00⟩ + β₄|01⟩ + γ₄|10⟩ + δ₄|11⟩)
2:
|ϕ₁⟩ ⊗ |ψ₂⟩ ⊗ |ξ₃⟩ ⊗ |η₄⟩ = (α₁-|00⟩ + β₁-|01⟩ + γ₁-|10⟩ + δ₁-|11⟩) ⊗ (α₂-|00⟩ + β₂-|01⟩ + γ₂-|10⟩ + δ₂-|11⟩) ⊗ (α₃-|00⟩ + β₃-|01⟩ + γ₃-|10⟩ + δ₃-|11⟩) ⊗ (α₄-|00⟩ + β₄-|01⟩ + γ₄-|10⟩ + δ₄-|11⟩)
After applying the phase shift gate, the equation becomes:
2': |ϕ₁⟩ ⊗ |ψ₂⟩ ⊗ |ξ₃⟩ ⊗ |η₄⟩ = (α₁-|00⟩ + e^(iπ/2)β₁-|01⟩ + γ₁-|10⟩ + δ₁-|11⟩) ⊗ (α₂-|00⟩ + β₂-|01⟩ + γ₂-|10⟩ + δ₂-|11⟩) ⊗ (α₃-|00⟩ + β₃-|01⟩ + γ₃-|10⟩ + δ₃-|11⟩) ⊗ (α₄-|00⟩ + β₄-|01⟩ + γ₄-|10⟩ + δ₄-|11⟩)
3:
|ϕ₁⟩ ⊗ |ψ₂⟩ ⊗ |ξ₃⟩ ⊗ |η₄⟩ = (α₁|00⟩ + β₁-|01⟩ + γ₁|10⟩ + δ₁-|11⟩) ⊗ (α₂|00⟩ + β₂-|01⟩ + γ₂|10⟩ + δ₂-|11⟩) ⊗ (α₃|00⟩ + β₃-|01⟩ + γ₃|10⟩ + δ₃-|11⟩) ⊗ (α₄|00⟩ + β₄-|01⟩ + γ₄-|10⟩ + δ₄|11⟩)
After applying the phase shift gate, the equation becomes:
|ϕ₁⟩ ⊗ |ψ₂⟩ ⊗ |ξ₃⟩ ⊗ |η₄⟩ = (α₁|00⟩ + e^(iπ/2)β₁-|01⟩ + γ₁|10⟩ + e^(iπ/2)δ₁-|11⟩) ⊗ (α₂|00⟩ + e^(iπ/2)β₂-|01⟩ + γ₂|10⟩ + e^(iπ/2)δ₂-|11⟩) ⊗ (α₃|00⟩ + e^(iπ/2)β₃-|01⟩ + γ₃|10⟩ + e^(iπ/2)δ₃-|11⟩) ⊗ (α₄|00⟩ + e^(iπ/2)β₄-|01⟩ + γ₄|10⟩ + δ₄|11⟩)
4:
|ϕ₁⟩ ⊗ |ψ₂⟩ ⊗ |ξ₃⟩ ⊗ |η₄⟩ = (α₁-|00⟩ + β₁|01⟩ + γ₁-|10⟩ + δ₁|11⟩) ⊗ (α₂-|00⟩ + β₂|01⟩ + γ₂-|10⟩ + δ₂|11⟩) ⊗ (α₃-|00⟩ + β₃|01⟩ + γ₃-|10⟩ + δ₃|11⟩) ⊗ (α₄-|00⟩ + β₄|01⟩ + γ₄-|10⟩ + δ₄|11⟩)
After applying the phase shift gate, the equation becomes:
|ϕ₁⟩ ⊗ |ψ₂⟩ ⊗ |ξ₃⟩ ⊗ |η₄⟩' = (e^(iθ)α₁-|00⟩ + e^(iθ)β₁|01⟩ + e^(iθ)γ₁-|10⟩ + e^(iθ)δ₁|11⟩) ⊗ (e^(iθ)α₂-|00⟩ + e^(iθ)β₂|01⟩ + e^(iθ)γ₂-|10⟩ + e^(iθ)δ₂|11⟩) ⊗ (e^(iθ)α₃-|00⟩ + e^(iθ)β₃|01⟩ + e^(iθ)γ₃-|10⟩ + e^(iθ)δ₃|11⟩) ⊗ (e^(iθ)α₄-|00⟩ + e^(iθ)β₄|01⟩ + e^(iθ)γ₄-|10⟩ + e^(iθ)δ₄|11⟩)
---------------------------------------------------------------------
Here, i is the imaginary unit and θ is the phase shift angle. The prime notation denotes the state after the phase shift gate operation.
----------------------------------------------------------------------
let's say we have these four quantum states:
|ϕ⟩ = α|0⟩ + β|1⟩
|ψ⟩ = γ|0⟩ + δ|1⟩
|ξ⟩ = ε|0⟩ + ζ|1⟩
|η⟩ = η|0⟩ + θ|1⟩
We can represent these states in the computational basis as:
|ϕ⟩ = α|00⟩ + β|01⟩
|ψ⟩ = γ|10⟩ + δ|11⟩
|ξ⟩ = ε|00⟩ + ζ|01⟩
|η⟩ = η|10⟩ + θ|11⟩
The tensor product of these states in the computational basis would be:
|ϕ⟩ ⊗ |ψ⟩ ⊗ |ξ⟩ ⊗ |η⟩ = (α|00⟩ + β|01⟩) ⊗ (γ|10⟩ + δ|11⟩) ⊗ (ε|00⟩ + ζ|01⟩) ⊗ (η|10⟩ + θ|11⟩) = αγεη|0000⟩ + αγζθ|0001⟩ + βγ
In the computational basis, we can express these states as:
|ϕ⟩ = α|00⟩ + β|01⟩ + γ|10⟩ + δ|11⟩
|ψ⟩ = α'|00⟩ + β'|01⟩ + γ'|10⟩ + δ'|11⟩
|ξ⟩ = α''|00⟩ + β''|01⟩ + γ''|10⟩ + δ''|11⟩
|η⟩ = α'''|00⟩ + β'''|01⟩ + γ'''|10⟩ + δ'''|11⟩
In the Hadamard basis, we can express these states as:
|ϕ⟩ = α|+⟩ + β|-⟩
|ψ⟩ = α'|+⟩ + β'|-⟩
|ξ⟩ = α''|+⟩ + β''|-⟩
|η⟩ = α'''|+⟩ + β'''|-⟩
--------------------------------------------------------------------
1': |ϕ₁⟩ ⊗ |ψ₂⟩ ⊗ |ξ₃⟩ ⊗ |η₄⟩ = (α₁|00⟩ + i*β₁|01⟩ + γ₁|10⟩ + δ₁|11⟩) ⊗ (α₂|00⟩ + β₂|01⟩ + γ₂|10⟩ + δ₂|11⟩) ⊗ (α₃|00⟩ + β₃|01⟩ + γ₃|10⟩ + δ₃|11⟩) ⊗ (α₄|00⟩ + β₄|01⟩ + γ₄|10⟩ + δ₄|11⟩) / sqrt(4)
2': |ϕ₁⟩ ⊗ |ψ₂⟩ ⊗ |ξ₃⟩ ⊗ |η₄⟩ = (α₁-|00⟩ + e^(iπ/2)β₁-|01⟩ + γ₁-|10⟩ + δ₁-|11⟩) ⊗ (α₂-|00⟩ + β₂-|01⟩ + γ₂-|10⟩ + δ₂-|11⟩) ⊗ (α₃-|00⟩ + β₃-|01⟩ + γ₃-|10⟩ + δ₃-|11⟩) ⊗ (α₄-|00⟩ + β₄-|01⟩ + γ₄-|10⟩ + δ₄-|11⟩) / sqrt(4)
3':|ϕ₁⟩ ⊗ |ψ₂⟩ ⊗ |ξ₃⟩ ⊗ |η₄⟩ = (α₁|00⟩ + e^(iπ/2)β₁-|01⟩ + γ₁|10⟩ + e^(iπ/2)δ₁-|11⟩) ⊗ (α₂|00⟩ + e^(iπ/2)β₂-|01⟩ + γ₂|10⟩ + e^(iπ/2)δ₂-|11⟩) ⊗ (α₃|00⟩ + e^(iπ/2)β₃-|01⟩ + γ₃|10⟩ + e^(iπ/2)δ₃-|11⟩) ⊗ (α₄|00⟩ + e^(iπ/2)β₄-|01⟩ + γ₄|10⟩ + δ₄|11⟩) / sqrt(4)
4':|ϕ₁⟩ ⊗ |ψ₂⟩ ⊗ |ξ₃⟩ ⊗ |η₄⟩' = (e^(iθ)α₁-|00⟩ + e^(iθ)β₁|01⟩ + e^(iθ)γ₁-|10⟩ + e^(iθ)δ₁|11⟩) ⊗ (e^(iθ)α₂-|00⟩ + e^(iθ)β₂|01⟩ + e^(iθ)γ₂-|10⟩ + e^(iθ)δ₂|11⟩) ⊗ (e^(iθ)α₃-|00⟩ + e^(iθ)β₃|01⟩ + e^(iθ)γ₃-|10⟩ + e^(iθ)δ₃|11⟩) ⊗ (e^(iθ)α₄-|00⟩ + e^(iθ)β₄|01⟩ + e^(iθ)γ₄-|10⟩ + e^(iθ)δ₄|11⟩) / sqrt(4)