📐 Homogeneous System Solutions
The solution set of a homogeneous system $Ax = \\mathbf{0}$ is a subspace of $F^n$, called the null space of $A$.
Proof: Let $N = \\{x \\in F^n : Ax = \\mathbf{0}\\}$.
- $A \\cdot \\mathbf{0} = \\mathbf{0}$, so $\\mathbf{0} \\in N$.
- If $x, y \\in N$, then $A(x + y) = Ax + Ay = \\mathbf{0} + \\mathbf{0} = \\mathbf{0}$.
- If $x \\in N$ and $c \\in F$, then $A(cx) = c(Ax) = c \\cdot \\mathbf{0} = \\mathbf{0}$.
From: Advanced Linear Algebra
Learn more: https://mathacademy-cyan.vercel.app/advlinalg-deploy/#/section/8
Explore all courses: https://mathacademy-cyan.vercel.app