A comprehensive exploration of reasoning LLMs focuses on four main approaches: inference-time scaling, pure reinforcement learning, supervised finetuning with RL, and pure supervised finetuning with distillation. The article analyzes DeepSeek R1's development pipeline and compares it with OpenAI's o1, highlighting how reasoning capabilities can emerge through different training methodologies. Practical insights are provided for developing reasoning models on limited budgets, including alternative approaches like journey learning and small-scale implementations.

https://magazine.sebastianraschka.com/p/understanding-reasoning-llms

via https://hnrss.org/newest?points=100, https://hnrss.org/newest?comments=100

Reply to this note

Please Login to reply.

Discussion

No replies yet.