I want to get better at learning the ins/outs of AI and this is a learning curriculum that I found online.

𝟭. 𝗠𝗮𝘁𝗵𝗲𝗺𝗮𝘁𝗶𝗰𝘀 𝗳𝗼𝗿 𝗠𝗮𝗰𝗵𝗶𝗻𝗲 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴

• Linear Algebra - 3Blue1Brown: https://lnkd.in/ejApha3z

• Immersive Linear Algebra: https://lnkd.in/ekaUs4Wz

• Linear Algebra - KA: https://lnkd.in/emCEHTq5

• Calculas - KA: https://lnkd.in/emCEHTq5

• Statistics and Probability - KA: https://lnkd.in/e6_SirMr

𝟮. 𝗣𝘆𝘁𝗵𝗼𝗻 𝗳𝗼𝗿 𝗠𝗮𝗰𝗵𝗶𝗻𝗲 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴

• Real Python: https://realpython.com

• Learn Python - freecodecamp: https://lnkd.in/ejfBftNf

• Python Data Science: https://lnkd.in/g4ZysfEe

• ML for Everybody: https://lnkd.in/ehR6xaGZ

• Intro to ML - udacity: https://lnkd.in/eVudd2Zm

𝟯. 𝗡𝗲𝘂𝗿𝗮𝗹 𝗡𝗲𝘁𝘄𝗼𝗿𝗸𝘀

• Neural Networks explained: https://lnkd.in/ehsg362K

• Deep Learning Crash Course: https://lnkd.in/edgfWdEv

• Practical Deep Learning - fast_ai: https://course.fast.ai

• PyTorch Tutorials: https://lnkd.in/euw-uQX9

𝟰. 𝗡𝗮𝘁𝘂𝗿𝗮𝗹 𝗟𝗮𝗻𝗴𝘂𝗮𝗴𝗲 𝗣𝗿𝗼𝗰𝗲𝘀𝘀𝗶𝗻𝗴 (𝗡𝗟𝗣)

• RealPython - NLP with spaCy: https://lnkd.in/eqPbFf_d

• NLP Guide Kaggle: https://lnkd.in/eT2DsqdN

• Illustrated Word2vec by Jay: https://lnkd.in/e5wK5yg9

• PyTorch RNN from Scratch: https://lnkd.in/eJWj5fUH

• Understanding LSTMN: https://lnkd.in/ed9ZVBnf

𝟱. 𝗣𝗿𝗼𝗷𝗲𝗰𝘁𝘀

• ML Projects in Python: https://lnkd.in/eC_gG8WH

• Super Duper NLP Repo: notebooks.quantumstat.com

#AI

Please let me know if you have other interesting links in #ai #ml #llm

Reply to this note

Please Login to reply.

Discussion

No replies yet.