📐 RSA Correctness
For properly chosen $e$ and $d$, decryption correctly recovers the original message: $m^{ed} \\equiv m \\pmod{n}$.
Proof: **Setup:** Let $n = pq$ for distinct primes $p, q$. Let $e$ be coprime to $\\varphi(n) = (p-1)(q-1)$, and let $d = e^{-1} \\pmod{\\varphi(n)}$.
This means $ed = 1 + k \\cdot \\varphi(n)$ for some integer $k$.
**Proof:**
We need to show $m^{ed} \\equiv m \\pmod{n}$ for any message $m$ with $0 \...
From: Cryptography Math
Learn more: https://cryptography-xi.vercel.app/#/section/10
Explore all courses: https://mathacademy-cyan.vercel.app