##快1000倍!!!华盛顿大学和微软团队使用图神经网络从单个蛋白质结构中预测隐藏Pocket的位置

有的蛋白质在基态结构中缺乏 Pocket,因此被认为是「不可成药的蛋白质」。通过靶向隐藏 Pocket,可以在「不可成药的蛋白质」中寻找新的机会,来扩大药物发现的范围。

然而,识别隐藏 Pocket 是一项劳动密集型且十分缓慢的工作。能否准确快速地预测结构,以及在何处可能形成隐藏 Pocket 的能力,可以加快寻找隐藏 Pocket 的速度。

华盛顿大学和微软团队的研究人员介绍了 PocketMiner,这是一种图形神经网络,经过训练可以预测分子动力学模拟中 Pocket 可能打开的位置。将 PocketMiner 应用于来自 39 个经过实验确认的隐藏 Pocket 的新策划数据集中的单个结构,表明它准确识别隐藏 Pocket(ROC-AUC: 0.87)比现有方法快 1,000 倍以上。

该团队将 PocketMiner 应用于整个人类蛋白质组,并展示了预测的 Pocket 在相关模拟中打开;这表明超过一半的蛋白质被认为缺乏基于可用结构的 Pocket,并可能包含隐藏的 Pocket,极大地扩展了潜在的药物蛋白质组。

该研究以「Predicting locations of cryptic pockets from single protein structures using the PocketMiner graph neural network」为题,于 2023 年 3 月 1 日发布在《Nature Communications》。

Reply to this note

Please Login to reply.

Discussion

No replies yet.